PENERAPAN SUPPLY CHAIN MANAGEMENT DI BIDANG MANAJEMEN DISTRIBUSI MENGGUNAKAN OPTIMASI LINEAR PROGRAMMING PYTHON: STUDI KASUS DAN ANALISIS PROBLEM DISTRIBUSI DAERAH PRODUKSI DAN KONSUMSI BERAS ANTAR KOTA DI JAWA TIMUR

Authors

  • MOHAMMAD NASRI AW STIEI Malang
  • SUDARJO Sekolah Tinggi Ilmu Ekonomi Indonesia Malang
  • Raden Hario Tirtosetianto Sekolah Tinggi Ilmu Ekonomi Indonesia Malang

DOI:

https://doi.org/10.51881/jak.v23i2.155

Keywords:

Supply Chain Management, Linear Programming, Distribusi Beras, Biaya Transportasi, Python

Abstract

Penelitian ini bertujuan untuk mengoptimalkan distribusi beras antar kota di Jawa Timur dengan
menggunakan metode Linear Programming (LP) berbasis Python dalam konteks Supply Chain
Management (SCM). Model LP yang dikembangkan bertujuan untuk mengoptimalnya
pemenuhan kebutuhan beras tiap kota dari produksi kota di Jawa Timur dan meminimalkan
biaya transportasi sambil memastikan bahwa permintaan di setiap kota dapat dipenuhi.
Berdasarkan hasil simulasi, model optimasi ini jumlah konsumsi beras sejumlah 7.760.358,08
ton didistribusikan 5.355.845,00 ton atau surplus 2.404.513,08 ton dengan biaya total
pengiriman Rp.240.099.337.188,4. Penggunaan Python dan pustaka Linear Programming
seperti PuLP memungkinkan pemodelan yang efisien, cepat, dan fleksibel dalam menghadapi
dinamika rantai pasokan beras. Penelitian ini menyarankan penerapan model ini pada distribusi
pangan lainnya di Indonesia, serta pengembangan model untuk mempertimbangkan
ketidakpastian dalam permintaan dan pasokan. Hasil penelitian ini memberikan kontribusi
signifikan dalam meningkatkan efisiensi distribusi pangan, mengoptimalkan biaya logistik, dan
memastikan ketepatan waktu pengiriman.

Downloads

Download data is not yet available.

References

BPS Provinsi JAwa Timur, 2025. Luas Panen, Produktivitas, dan Produksi Padi Menurut

Kabupaten/Kota di Provinsi Jawa Timur, 2018; link: BPS

BPS Provinsi JAwa Timur, 2025. Konsumsi Beras (Ton), 2018; link: BPS

The Asia Foundation. 2008. Biaya Transportasi Barang Angkutan, Regulasi, dan

Pungutan Jalan di Indonesia. link: The Asia Foundation

BPS Provinsi Jawa Timur, 2025. Jarak Antar Kota di Jawa Timur. link: BPS

BPS, 2025. Konversi Gabah Ke Beras (SKGB) Tahun 2018; link: BPS

BPS. 2019. Kurs Tahun 2008. link: BPS

Chopra, S., & Meindl, P. (2019). Supply Chain Management: Strategy, Planning, and

Operation. Pearson Education.

Tiwari, M. K., & Soni, G. (2015). Optimization of supply chain network using linear

programming. International Journal of Engineering & Technology, 7(2), 75-85.

Zhang, J., & Xie, J. (2017). A Linear Programming Model for Optimal Distribution System

Design. International Journal of Production Economics, 183, 150-163.

Python Software Foundation. (2020). SciPy: Scientific Computing Tools for Python.

Retrieved from https://www.scipy.org/

Kumar, S., & Soni, G. (2018). An Analysis of Distribution Logistics Using Linear

Programming. Journal of Logistics Management, 32(4), 567-582.

Christopher, M. (2016). Logistics & Supply Chain Management. Pearson Education.

Chien, C. F., & Ding, Y. M. (2019). Supply Chain Management: Optimization and

Applications. Springer International Publishing.

Garey, M. R., & Johnson, D. S. (2020). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company.

Zhang, X., Li, S., & Zhang, L. (2020). Optimizing Supply Chain Logistics with Linear

Programming: A Case Study on Rice Distribution. Journal of Optimization Theory and

Applications, 54(3), 225-240.

Li, X., & Zhang, W. (2019). Optimizing Transportation in Supply Chains using Python and

Linear Programming. International Journal of Logistics Research and Applications,

(1), 80-95.

Supriyadi, A., Santosa, B., & Yulianto, F. (2020). Efficiency in Rice Distribution in East

Java: A Linear Programming Approach. Journal of Indonesian Agricultural Economics,

(2), 135-150.

/ 14

Jaya, I. K., Setiawan, E., & Rahman, A. (2021). Enhancing Rice Distribution with Linear

Programming in Indonesia: A Case Study of East Java. Indonesian Journal of Supply

Chain Management, 38(4), 255-269.

Chen, M., & Wang, J. (2020). Optimization in Logistics: A Review of Linear Programming

Applications. International Journal of Logistics Systems and Management, 35(2),

-240.

Dufresne, A., & Talbot, F. (2019). Supply Chain Optimization Using Python: Case Study

and Applications. Computational and Mathematical Methods in Medicine, 2019, 1-14.

Kumar, A., & Sharma, R. (2021). Linear Programming Approaches to Optimize Logistics

in Supply Chains. Journal of Optimization in Engineering, 14(4), 213-227.

Li, Q., & Zhao, X. (2019). Efficient Distribution Systems using Linear Programming: A

Case Study in East China. Journal of Supply Chain and Operations Management, 18(3),

-61.

Zhang, Y., & Liu, J. (2021). A Review on Linear Programming in Supply Chain

Management: Application in Logistics Optimization. Industrial Engineering Journal,

(1), 102-118.

Pereira, R., Silva, E., & Costa, S. (2021). Python for Logistics Optimization: Case

Studies and Practical Applications. Journal of Computational Science, 48(6), 412-429.

Li, X., & Zhang, W. (2019). Optimizing Transportation in Supply Chains using Python and

Linear Programming. International Journal of Logistics Research and Applications,

(1), 80-95

Downloads

Published

07-07-2025

How to Cite

moehammad, nasri, Sudarjo, & RADEN HARIO TIRTOSETIANTO. (2025). PENERAPAN SUPPLY CHAIN MANAGEMENT DI BIDANG MANAJEMEN DISTRIBUSI MENGGUNAKAN OPTIMASI LINEAR PROGRAMMING PYTHON: STUDI KASUS DAN ANALISIS PROBLEM DISTRIBUSI DAERAH PRODUKSI DAN KONSUMSI BERAS ANTAR KOTA DI JAWA TIMUR. Akademika : Jurnal Manajemen, Akuntansi, Dan Bisnis., 23(2), 165–173. https://doi.org/10.51881/jak.v23i2.155